
Users Guide For

XLSConverterX
By SoftInterface, Inc.

Version 1.X
Windows 95/98/2000/XP

Contents

XLSConverterX Users Manual 1
What is XLSConverterX?..1
XLSConverterX Features ..2
What is an ActiveX control?..2
What You Will Need to Use XLSConverterX...3
Installing ..3
Uninstalling ...3
Distributing XLSConverterX...3
Troubleshooting XLSConverterX - Updates ...4
Using Borland C++ Builder...4

C++ Builder: Importing Components..4
C++ Builder: Passing Arguments ..5

Using CreateObject() To Create an Instance ...6

XLSConverterX Reference 7
Properties ...7

ErrorString...7
ExcelVersion ...7
FilesJustCreatedCount...7
InputFile_PassWord ..7
InputFile_PassWord_TW..7
Key ..8
OptimizeForSpeed...8
OutputFile_PassWord..8
OutputFile_PassWord_TW ...8
SheetsJustProcessedCount...8
SkipEmptySheets...9
StateFile...9
UseStateFile...9
Verbose..9

Methods: Excel File Manipulation...9
AddSheet ...9
ChangeNumberFormat ..11
ChangePassword ...11
CopySheet ...12
CopySheetData..13
CopySheetDataEx ...15
DeleteSheet..17
DeleteRowsOrColumns...18
FilesJustCreated...18
GetSheetNames ...19
IsFileUnicode ..19
MoveSheet...19
OpenXLSSaveAs...20

WordConverterX Contents • i

RenameSheet ...22
SearchAndReplaceCellContent ...22
SheetsJustProcessed ..23
ShowSheetSelectionDialog ...23
TransposeSheetData ..24

Methods: Text Files Manipulation...25
ConcatenateTwoTextFiles ...25
DeleteEmptyLinesFromTextFile ...26

Methods: CSV File Manipulation..27
csvChangeDelimitationCharacter ..27
csvCropCSVFileCols ..28
csvCropCSVFileRows...29
csvEncaseEachFieldWithQuotes ...29
csvPadForFixedLengthFields ..30
csvPadWithSpaces...31
csvRemoveControlCharactersFromFile ..32
csvRemoveEmptyLines...32
csvTrimCSVFile..33
txtChangeCharacterIgnoreWithinQuotes ..34

Methods: General...34
ExcelIsInstalled ...34
StateFileLoad...34
StateFileSave ...35

Events ..35
OnError..35

Conversion Formats 36
Excel File Conversion Formats..36

ii • Contents WordConverterX

XLSConverterX Users Manual

What is XLSConverterX?
XLSConverterX is an ActiveX component designed to assist you, the developer, in
quickly adding an Excel conversion/manipulation utility to your applications.
XLSConverterX is designed to manipulate comma delimited CSV, and MS Excel
(and any files MS Excel can open) files. A tool like this can be very helpful when
you need to move, convert or manipulate Excel like data. HTML, Text, RTF and
CSV are available for conversion as well as several database formats and older
versions of Excel, beginning with version 2.0.

In addition to doing file conversions, XLSConverterX also adds enhanced features
and some basic data massaging methods to further enhance its usefulness. If you
need to include Excel manipulation capability in your program, XLSConverterX
offers numerous specialized processes including:

• Copy specific sheet data from one worksheet to another within the

same or a different workbook
• Concatenate/append specified data from a whole folder of workbooks

to a single sheet
• Copy an entire worksheet (including formatting) to the same or a

different workbook, and specify location within the target workbook
• Delete a single or whole range of sheets within a workbook
• Add a new sheet and specify where to place the new sheet within the

workbook
• Move a sheet to a specific place within a workbook
• Rename an existing sheet

In addition to the worksheet manipulation, many other special processes for CSV
and/or text files have been built into XLSConverterX. These include:

• (*.TXT) Append (Concatenate) files. Original file(s) content is placed
at the end of the Target file.

• (*.TXT) Remove empty lines
• (*.CSV) Surround field with quotes
• (*.CSV) Pad field with spaces
• (*.CSV) Change comma to other delimiter
• (*.CSV) Remove Empty Lines
• (*.CSV) Include specified ROWS, discard all others
• (*.CSV) Include specified COLUMNS, discard all others

WordConverterX XLSConverterX Users Manual • 1

• (*.CSV) Remove control characters
• (*.CSV) Trim excess commas

XLSConverterX encapsulates all the details required for quick integration.
Furthermore, an extensive sample Visual Basic application is provided to get you up
to speed quickly and demonstrates XLSConverterX’s capability and usability.
Although you may not be using Visual Basic, the approach for all development
environments will be similar.

Simply install the product, and add the component to your development
environment. Once in place, the routines can be accessed to programmatically
convert and manipulate Excel files. The code required to integrate this component in
an application is relatively small considering the functionality it provides.

This Reference section of this document discusses the Properties, Methods, and
Events that are exposed by the XLSConverterX component. Please check
Distributing XLSConverterX for information concerning which files are required
when distributing XLSConverterX.

Please Note: In those cases where an Excel file is used, this product automates MS
Excel to convert/manipulate the files; therefore, MS Excel is required. The user is
encouraged to make sure Excel is properly licensed on the PC.

At SoftInterface, Inc. we are constantly enhancing and improving our products.
Please visit our web site to see what is new and tell us what you would like to see in
our products (WWW.SoftInterface.COM). In addition, it is important to register
your products to ensure you have the latest version and support.

XLSConverterX Features
• Advanced Excel manipulation special processes include moving, deleting,

adding and copying whole sheets or portions of sheets.

• Append/concatenate Excel files into a single sheet

• For Excel users, selectable sheets; syntax is simple (i.e. "1,2,4-10" or "*" for all)

• Numerous comma delimited file (CSV) manipulation methods

• Concatenate text files and remove empty lines

• Quick integration (sample source code provided)

• Supports MS Excel and CSV formats

• Crop/extract specific columns/rows from an Excel spreadsheet

• Can be adapted for most languages

What is an ActiveX control?
ActiveX controls are an extension of Microsoft’s COM (Component Object Model)
technology, providing unprecedented compatibility with almost any rapid application
development environment. ActiveX controls, sometimes referred to as reusable
components, give you, the programmer, the easiest way to incorporate advanced
functionality into your applications with little or no programming on your part.

2 • XLSConverterX Users Manual WordConverterX

http://www.softinterface.com/

What You Will Need to Use XLSConverterX
The minimum hardware and software requirements to install and support the use of
XLSConverterX are:

• Microsoft Excel on the target machine if you intend to use the Excel features.
NOTE: You are responsible for purchasing and proper licensing of this product

• IBM or compatible PC/AT (Pentium or higher CPU) with 16 MB of memory
and one hard disk drive with 3 MB of space

• VGA or SVGA display adapter

• Microsoft Windows 95, Windows 98, Windows 2000, or Windows XP

• Development environment supporting 32-bit OCX controls such as Microsoft’s
Visual Basic (4.x or greater)

Installing
When you run the setup program to install XLSConverterX on your computer, you
will be able to specify where on your hard drive to install. It is preferable to install it
in the suggested directory for consistency (although not required).

Run the Setup.EXE that came with the XLSConverterX media. You may do this by
clicking the Start button from the taskbar and select the Run... menu option. Then
type the path and location of the Setup.EXE program. For example:

A:setup

Then press ENTER. Thereafter, follow the installation instructions on the screen.

Uninstalling
It is highly suggested that you uninstall XLSConverterX before upgrading to a newer
version of the product.

To uninstall XLSConverterX click the Start button from the taskbar and select
Settings then Control Panel. Within the control panel, select the Add/Remove
Programs icon. Double click on the XLSConverterX entry in the list box or push the
Add/Remove button to uninstall.

All files copied during the installation will be removed (only if other programs are
not currently dependent on them). Furthermore, if files have been added to the
installation directory (i.e. program files you created) then the uninstall wizard will
report that not all directories could be deleted. You will have to manually remove
those files.

Distributing XLSConverterX
The necessary files needed to deploy your applications with XLSConverterX are
discussed here. XLSConverterX is a self-registering ActiveX component.

The following table lists dependencies of XLSConverterX (Items in bold were
shipped with XLSConverterX.OCX):

WordConverterX XLSConverterX Users Manual • 3

XLSCONVERTERX IMMEDIATE
DEPENDENCIES

VERSION IN
USE AT
TIME OF
SHIPPING

MSVBVM60.DLL 6.0.89.64

ADVAPI32.DLL 5.0.2195.5992

OLE32.DLL 5.0.2195.6089

OLEAUT32.DLL 2.40.4518.0

SCRRUN.DLL 5.6.0.6626

CSVSPECIALPROCESSING.DLL 0.0.0.0

KERNEL32.DLL 5.0.2195.6079

USER32.DLL 5.0.2195.6097

GDI32.DLL 5.0.2195.5907

Dependency implies that the file(s) must be installed before XLSConverterX.OCX is
installed and registered.

Troubleshooting XLSConverterX - Updates
The SoftInterface, Inc. web site (www.SoftInterface.COM) will have the links
required for all XLSConverterX:

• Frequently Asked Questions

• Bug Lists

• Latest Patches/Downloads

Please first review this manual, then the SoftInterface, Inc. Web site for assistance.

If you are still having trouble, you may e-mail for support at
Support@SoftInterface.COM.

Using Borland C++ Builder
C++ Builder version 6 and up is suggested. You will want to import the
XLSConverterX components before using Borland C++ Builder.

C++ Builder: Importing Components
After installation of this product, it can be made available from the 'ActiveX' tab of
the C++ Builder controls palette by:

4 • XLSConverterX Users Manual WordConverterX

http://www.softinterface.com/
mailto:Support@SoftInterface.COM

i. Selecting the "Component\Import ActiveX Control…"

menu item.

ii. Selecting XLSConverterX ActiveX Control Module
from the list of available components.

iii. Clicking the Install button to create a package. The name
and location of the package is of your choosing.

iv. After this has completed the component palette will be
updated as a result of rebuilding the package.

C++ Builder: Passing Arguments
All arguments to the methods or events can be viewed by the wrapper class,
TXLSConverterX, created by the importing mechanism.

Passing string arguments that do not get modified by the calling method can be done
by using the WideString data type as illustrated below:

 WideString wsSourceFile,wsTargetFile;
 wsSourceFile = txtWordSourceFile->Text;
 wsTargetFile = txtWordTargetFile->Text;
 bResult = WCX->ConvertWordDoc(wsSourceFile, wsTargetFile,
cWordType[cbWordConversionType->ItemIndex]);

Although none exist in TXLSConverterX, passing strings arguments that get
modified by the calling method can done by using the WideString data type as
illustrated below:

/*
VARIANT_BOOL __fastcall TCompareFilesX::DirCompareResultsGet(long
ResultIndex, BSTR* FileName, BSTR* DirMaster, BSTR* DirSource,long*
IsFile, long* OnlyInSource,long* OnlyInMaster, long*
SizeDifferent,long* DateDifferent,long* ContentDifferent)
*/
 WideString ws_file_name,ws_dir_mstr,ws_dir_src;
 if (CompareFilesX1->DirCompareResultsGet(ii, &ws_file_name,
&ws_dir_mstr, &ws_dir_src, &bIsFile, &bOnlyInSource, &bOnlyInMaster,
&bSizeDifferent, &bDateDifferent, &bContentDifferent) == FALSE)
 break;// Exit for loop

 AnsiString as_file_name = AnsiString(ws_file_name);
 AnsiString as_dir_mstr = AnsiString(ws_dir_mstr);

WordConverterX XLSConverterX Users Manual • 5

 AnsiString as_dir_src = AnsiString(ws_dir_src);

Using CreateObject() To Create an Instance
Often, the method for using a control requires you to create an object reference to the
control. Assuming that you have registered the control on a computer the typical
syntax, such as ADO would use, would be:

Set oObject = Server.CreateObject("ObjectName.ClassName")

In the case of XLSConverterX, please use “XLSConverterX” as the Object name and
XLSConverterXCtrl as the Class name. For example:

Set oObject = Server.CreateObject("XLSConverterX.XLSConverterXCtrl")

6 • XLSConverterX Users Manual WordConverterX

XLSConverterX Reference

Properties

ErrorString
Data Type: String

Default Value: “ ”

Description: If any of the methods return an error value, this property will contain a
descriptive sentence describing what is wrong.

ExcelVersion
Data Type: Double

Default Value: “ ”

Description: Version of the installed Excel application.

FilesJustCreatedCount
Data Type: Long

Default Value: 0

Description: When using OpenXLSSaveAs(), this propery gets updated. The
number of files created is available through this property. See also the
FilesJustCreated() method.

InputFile_PassWord
Data Type: String

Default Value: “ ”

Description: If you Input file requires a password to open, use this property to
specify it before calling any methods.

InputFile_PassWord_TW
Data Type: String

WordConverterX XLSConverterX Reference • 7

Default Value: “ ”

Description: If you Input file requires a password to write, use this property to
specify it before calling any methods.

Key
Data Type: Long Integer

Default Value: 0

Description: Set this parameter to the registration/serial number you receive upon
purchase of XLSConverterX to change the product from shareware to release mode.

OptimizeForSpeed
Data Type: Boolean

Default Value: False

Description: When using Excel file manipulation methods (i.e. CopySheetData(),
AddSheet(), MoveSheet() etc.), XLSConverterX must open MS Excel. Calling such
methods can cause XLSConverterX to create and destroy an Excel application
EACH time it is called. To only create and destroy MS Excel once for numerous
calls to such methods, set this property to TRUE.

Note: There is a trade off between memory conservation and speed that must be
understood. When setting this property to TRUE, your application has the potential
to be much faster, as in those cases where many Excel methods are called. However,
Excel has a tendency to eat more and more memory if it is not destroyed
periodically. Therefore, setting this property to FALSE optimizes for memory
conservation.

OutputFile_PassWord
Data Type: String

Default Value: “ ”

Description: If you Output file requires a password to open, use this property to
specify it before calling any methods.

OutputFile_PassWord_TW
Data Type: String

Default Value: “ ”

Description: If you Input file requires a password to write, use this property to
specify it before calling any methods.

SheetsJustProcessedCount
Data Type: Long

Default Value: 0

Description: When using OpenXLSSaveAs(), this propery gets updated. The
number of sheets processed is available through this property. See also the
SheetsJustProcessed() method.

8 • XLSConverterX Reference WordConverterX

SkipEmptySheets
Data Type: Boolean

Default Value: False

Description: If set to FALSE XLSConverterX will ignore any blank sheets that are
found in the subject workbook.

StateFile
Data Type: String

Default Value: WindowsFolder\XLSCX.INI

Description: Path and filename where state variables for this component will be
saved. All the properties associated with this component are saved to an INI file.
You can specify which INI file to use.

Why is this property needed? Because if you have multiple instances of this
component, either in the same or different application running on the same PC, you
may want different property settings for each instance.

See Also: UseStateFile, StateFileSave(), StateFileLoad()

UseStateFile
Data Type: Boolean

Default Value: True

Description: When TRUE the StateFile is loaded and utilized; when FALSE the
default properties are used.

See Also: StateFile, StateFileSave(), StateFileLoad()

Verbose
Data Type: Boolean

Default Value: False

Description: If set to FALSE XLSConverterX will suppress warnings and prompts
that Excel might generate.

Methods: Excel File Manipulation
In nearly all the file manipulation methods there will be an original (sPathOriginal)
and target (sPathTarget) file specified as a parameter. Therefore, it should be
understood that the original file does not have to be modified, but can be if you
desire it to be. To modify the original file, specify it as both the original and target.
To create a new file based on the original file, while leaving the original file
unchanged, specify a target file that is different from the original file.

AddSheet
Description: Add a new blank worksheet to a specified location within a workbook.

WordConverterX XLSConverterX Reference • 9

Parameters:

AddSheet(sPathOriginal As String, sPathTarget As String, sSheetToAdd As String,
sSheetBefore As String, sSheetAfter As String, bOverwrite As Boolean) As Long

Parameter Meaning

sPathOriginal Excel file to use as the original file.

 sPathTarget Can be same as sPathOriginal, otherwise a new workbook is created with both the
original and newly added sheet(s).

sSheetToAdd Name of the sheet to add. Not required, can use "" to get default Excel name.
sSheetBefore Added sheet will be placed before this sheet (Name or #). If sSheetBefore = "firstfirst"

then it is placed as the first sheet in the workbook.

sSheetAfter Added sheet will be placed after this sheet (Name or #). If sSheetAfter = "lastlast" then
it is placed as the last sheet.

bOverwrite If sSheetToAdd already exists, it will be overwritten if this parameter is set to TRUE.
Otherwise error -212 is returned.

Notes: If both sSheetBefore and sSheetAfter are empty strings then the new sheet
will be the last sheet.

Return Values:

 0: Success

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error

 -201: Shareware Expired

 -204: Source Sheet does not exist

 -208: Target Path folder does not exist, even after attempting to create it.

 -210: SheetBefore or SheetAfter does not exist

 -212: "Target Sheet already exists. Set overwrite to TRUE to copy over existing
sheet."

Example Code:

Taken from the sample VB program provided, when AddSheet() is called, a data
collection form is displayed, the data is collected then passed to the component for
processing.

 Case SP_XLS_ADD_SHEET
 frmXLSAddSheet.Show vbModal ‘display form
 If (frmXLSAddSheet.bErrorOccurred = True) Then
 Exit Sub
 Else ‘collect necessary data
 strSheetToAdd = frmXLSAddSheet.sTargetSheet
 strSheetBefore = frmXLSAddSheet.sSheetBefore
 strSheetAfter = frmXLSAddSheet.sSheetAfter
 blnOverwrite = frmXLSAddSheet.bOverwrite
 End If
 ‘call component with necessary arguments
 lngResult = XLSConv1.AddSheet(strSourceFile, strTargetFile,

 strSheetToAdd, strSheetBefore, strSheetAfter,
 blnOverwrite)

10 • XLSConverterX Reference WordConverterX

ChangeNumberFormat
Description: Changes the number format of selected cells.

Parameters:

ChangeNumberFormat(sPathOriginal As String, PathTarget As String, sSheet As
String, sRangeToChange As String, sNewFormat As String)

Parameter Meaning

 sPathOriginal Excel file from which to change the number format

 sPathTarget Can be same as sPathOriginal, otherwise a new workbook is created.
sSheet Sheet to change number formatting
sRangeToChange Range of cells that will have new formatting applied to

sNewFormat The new number format that will be applied to sRangeToChange

Return Values:

 0: Success

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error.

 -201: Shareware Expired.

 -208: Target path folder does not exist, even after attempting to create it.

 -213: Invalid or missing sheet specified.

ChangePassword
Description: Changes the password of an Excel workbook.

Parameters:
ChangePassword(sPathOriginal As String, sPathTarget As String,
 sOriginalFilePW As String, sOriginalFilePWToWrite As String,
 sTargetFilePW As String, sTargetFilePWToWrite As String) As Long

Parameter Meaning

 sPathOriginal Excel file from which to copy the sheet.

 sPathTarget Excel file to which data is copied.
sOriginalFilePW Original file password to open XLS file
sOriginalFilePWToWrite Original file password to write within the XLS file

sTargetFilePW Target file password to open the XLS file
sTargetFilePWToWrite Target file password to write within the XLS file

Notes: sPathOriginal AND sPathTarget can be the same Excel file, in which case
the passwords of the file are changed or removed.

Return Values:

 0: Success

 -3: Unable to create Excel Application. Is it installed?

WordConverterX XLSConverterX Reference • 11

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error

 -201: Shareware Expired

 -208: Target Path folder does not exist, even after attempting to create it.

Example Code:

This simple example opens “C:\input\A.XLS” and changes its password to open
from “Apples” to “Oranges”:

lErr = XLSCX.ChangePassword(“C:\input\A.XLS”, “C:\input\A.XLS”,

“Apples”, “”, “Oranges”, “”)

CopySheet
Description: Copies an entire worksheet from one Excel file to another, or the same
Excel file. This includes values, formulas, formatting etc.

Parameters:

CopySheet(sPathOriginal As String, sSheetOriginal As String, sPathTarget As
String, sSheetTarget As String, sSheetBefore As String, sSheetAfter As String,
lActionIfAlreadyExists As Long) As Long

Parameter Meaning

 sPathOriginal Excel file from which to copy the sheet.

sSheetOriginal Sheet Name or number to copy.

 sPathTarget Excel file to which data is copied.
sSheetTarget Renames the copied sheet to string specified in sSheetTarget. This is only

available when a single sheet is being copied.
sSheetBefore Copied sheet will be placed before this sheet (Name or #). If sSheetBefore =

"firstfirst" then it is placed as the first sheet in the workbook.

sSheetAfter Copied sheet will be placed after this sheet (Name or #). If sSheetAfter = "lastlast"
then it is placed as the last sheet.

lActionIfAlreadyExists If sheet name being copied already exists in the target workbook, 1 of 4 actions
will be done:
0 = Copy sheet and give similar name as original sheet.
1 = Overwrite duplicates
2 = Skip duplicates
3 = Stop Copying and report an error

Notes: sPathOriginal AND sPathTarget can be the same Excel file, in which case
the positioning information (sSheetBefore, sSheetAfter) is used. Otherwise, a new
workbook file is created, and saved as sPathTarget. If sPathOriginal and
sPathTarget are different, all positioning information is ignored, since it will be the
only sheet in the new workbook. If both sSheetBefore and sSheetAfter are specified,
sSheetAfter is used.. When a single sheet is being copied, a new name may be
specified in sSheetTarget for the new sheet. This is not available when copying
multiple sheets.

Return Values:

 0: Success

12 • XLSConverterX Reference WordConverterX

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error

 -201: Shareware Expired

 -202: Source File does not exist

 -203: Target File does not exist

 -204: Source Sheet does not exist

 -208: Target Path folder does not exist, even after attempting to create it.

 -210: SheetBefore or SheetAfter does not exist

 -211: "SheetBefore AND SheetAfter have not been specified. Use different target
file to create a new workbook with worksheet copy."

 -212: "Target Sheet already exists. Set overwrite to TRUE to copy over existing
sheet."

Example Code:

Taken from the sample VB program, the component is passed the necessary
arguments to copy a worksheet.

frmXLSCopySheet.Setup ‘calls an ancillary form to

‘collect data
 If (frmXLSCopySheet.bErrorOccurred = True) Then
 Exit Sub
 End If
 ‘assign data from form to variables
 strSheetOriginal = frmXLSCopySheet.sOriginalSheet
 strSheetTarget = frmXLSCopySheet.sTargetSheet
 strSheetBefore = frmXLSCopySheet.sSheetBefore
 strSheetAfter = frmXLSCopySheet.sSheetAfter
 ‘call the component with the necessary arguments
 lngResult = XLSConv1.CopySheet(strSourceFile,

 strSheetOriginal, strTargetFile,
 strSheetTarget, strSheetBefore, strSheetAfter,
 lOverwrite)

 Unload frmXLSCopySheet

CopySheetData
Description: Copies data (values or formulas) you specify from a worksheet to the
same/different worksheet. The data can be also be copied to the same or different
Excel workbook file.

Parameters:

CopySheetData(sPathOriginal As String, sSheetOriginal As String,
sRangeToCopyFrom As String, sPathTarget As String, sSheetTarget As String,
sRangeToCopyTo As String, bDoFormula As Boolean, bCopyNameOfSheet As
Boolean, bAddSheetsIfNecessary As Boolean) As Long

Parameter Meaning

sPathOriginal Excel file which data is copied FROM.

sSheetOriginal Sheet Name or number FROM which data is copied.

 sRangeToCopyFrom Range of cells FROM which to copy data. If empty, it copies the range of used
cells.

WordConverterX XLSConverterX Reference • 13

sPathTarget Excel file TO which data is copied. If folder does not exist, XLSConverterX will
attempt to create it. NOTE: sPathOriginal and sPathTarget can be the same or
different Excel file.

sSheetTarget Sheet Name or number TO which data is copied.

sRangeToCopyTo Range of cells from which to copy data TO. Typical Excel syntax is acceptable.
For example "A1:B10", "J5:K20", etc.

If this parameter is empty, it will use the range specified by:

1) sRangeToCopyFrom only if sRangeToCopyFrom is not empty otherwise

2) it will use the same used range of cells as found in sSheetOriginal.

If this range does not have the same dimensions as the sRangeToCopyFrom data
may be lost in the copy operation.

If set to "Below", the copied data is placed below the currently used range.

If set to "Right", the copied data is placed to the right of the currently used range.

HINT: "Below" and "Right" can be used to concatenate/append multiple sheets of
data into one.

Specifying a single cell (i.e. "B10") will cause the data to be placed beginning at
that cell. If you specify a smaller range than the copied range, the data will be
truncated. Specifying a larger range than the copied range causes invalid data to
be copied to the target sheet.

bDoFormula If TRUE, CopySheetData() will copy the formula vs. value of each cell.

bCopyNameOfSheet Typically only used if the sSheetOriginal specifies a sheet number (vs. Name).
The target sheet name will be the same as the original.

bAddSheetsIfNecessary If sheets must be added to accommodate the sSheetTarget request, they will be if
this parameter is set to TRUE. Otherwise, this function returns –205.

Notes: sPathOriginal combined with sSheetOriginal and sRangeToCopyFrom are
used to specify what data to copy. sPathTarget combined with sSheetTarget and
sRangeToCopyTo specify the where to copy to.

Return Values:

 0: Success

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error

 -201: Shareware Expired

 -202: Original File does not exist

 -203: Target File does not exist

 -204: Original Sheet does not exist

 -205: Target Sheet does not exist, be sure the 'Add sheets if necessary option' is set
to True.

 -206: Target Workbook cannot have two similarly named sheets. Original sheet
name already exists in Target.

 -207: Target Path file cannot have a wild card (i.e. *.XLS)

 -208: Target Path folder does not exist, even after attempting to create it.

 -200: Excel reported an error

14 • XLSConverterX Reference WordConverterX

Example Code:

Taken from the sample VB program, this code snippet demonstrates a call to the
component to copy specific data from a spreadsheet after collecting the necessary
data and passing it to the component.

 Case SP_XLS_COPY_SHEET_DATA
 frmCopySheetData.Setup ‘calls an ancillary form to collect data
 If (frmCopySheetData.bErrorOccurred = True) Then
 Exit Sub
 End If
 ‘assign data from the form to variables
 strSheetOriginal = frmCopySheetData.sOriginalSheet
 strRangeToCopyFrom = frmCopySheetData.sSpecifiedRangeToCopyFrom
 strSheetTarget = frmCopySheetData.sTargetSheet
 strRangeToCopyTo = frmCopySheetData.sSpecifiedRangeToCopyFromTo
 blnDoFormula = frmCopySheetData.bCopyFormula
 blnCopyNameOfSheet = frmCopySheetData.bCopySheetName
 blnAddSheetsIfNecessary = True
 ‘call the component with necessary arguments
 lngResult = XLSConv1.CopySheetData(strSourceFile,

 strSheetOriginal, strRangeToCopyFrom,
 strTargetFile, strSheetTarget, strRangeToCopyTo,
 blnDoFormula, blnCopyNameOfSheet,
 blnAddSheetsIfNecessary)

 Unload frmCopySheetData ‘the ancillary form is unloaded

CopySheetDataEx
Description: This function does exactly what CopySheetData() does, however, you
can now specify ranges of sheets to copy from and to.

Parameters:

CopySheetData(sPathOriginal As String, sSheetOriginal As String,
sRangeToCopyFrom As String, sPathTarget As String, sSheetTarget As String,
sRangeToCopyTo As String, bDoFormula As Boolean, bCopyNameOfSheet As
Boolean, bAddSheetsIfNecessary As Boolean) As Long

Parameter Meaning

sPathOriginal Excel file which data is copied FROM.

sSheetOriginal Sheet Names or numbers FROM which data is copied. You may specify ranges
i.e."2-4,10" or "*" for all
 OR
 "2-4,10" or "Sheet1,Sheet4"

 sRangeToCopyFrom Range of cells FROM which to copy data. If empty, it copies the range of used
cells.

sPathTarget Excel file TO which data is copied. If folder does not exist, XLSConverterX will
attempt to create it. NOTE: sPathOriginal and sPathTarget can be the same or
different Excel file.

sSheetTarget Sheet Names or numbers TO which data is copied. You may specify ranges
i.e."2-4,10" or "*" for all
 OR
 "2-4,10" or "Sheet1,Sheet4"

sRangeToCopyTo Range of cells from which to copy data TO. Typical Excel syntax is acceptable.
For example "A1:B10", "J5:K20", etc.

WordConverterX XLSConverterX Reference • 15

If this parameter is empty, it will use the range specified by:

1) sRangeToCopyFrom only if sRangeToCopyFrom is not empty otherwise

2) it will use the same used range of cells as found in sSheetOriginal.

If this range does not have the same dimensions as the sRangeToCopyFrom data
may be lost in the copy operation.

If set to "Below", the copied data is placed below the currently used range.

If set to "Right", the copied data is placed to the right of the currently used range.

HINT: "Below" and "Right" can be used to concatenate/append multiple sheets of
data into one.

Specifying a single cell (i.e. "B10") will cause the data to be placed beginning at
that cell. If you specify a smaller range than the copied range, the data will be
truncated. Specifying a larger range than the copied range causes invalid data to
be copied to the target sheet.

bDoFormula If TRUE, CopySheetData() will copy the formula vs. value of each cell.

bCopyNameOfSheet Typically only used if the sSheetOriginal specifies a sheet number (vs. Name).
The target sheet name will be the same as the original.

bAddSheetsIfNecessary If sheets must be added to accommodate the sSheetTarget request, they will be if
this parameter is set to TRUE. Otherwise, this function returns –205.

Notes: sPathOriginal combined with sSheetOriginal and sRangeToCopyFrom are
used to specify what data to copy. sPathTarget combined with sSheetTarget and
sRangeToCopyTo specify the where to copy to.

Return Values:

 0: Success

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error

 -201: Shareware Expired

 -202: Original File does not exist

 -203: Target File does not exist

 -204: Original Sheet does not exist

 -205: Target Sheet does not exist, be sure the 'Add sheets if necessary option' is set
to True.

 -206: Target Workbook cannot have two similarly named sheets. Original sheet
name already exists in Target.

 -207: Target Path file cannot have a wild card (i.e. *.XLS)

 -208: Target Path folder does not exist, even after attempting to create it.

 -200: Excel reported an error

Example Code:

Taken from the sample VB program, this code snippet demonstrates a call to the
component to copy specific data from a spreadsheet after collecting the necessary
data and passing it to the component.

16 • XLSConverterX Reference WordConverterX

 Case SP_XLS_COPY_SHEET_DATA
 frmCopySheetData.Setup ‘calls an ancillary form to collect data
 If (frmCopySheetData.bErrorOccurred = True) Then
 Exit Sub
 End If
 ‘assign data from the form to variables
 strSheetOriginal = frmCopySheetData.sOriginalSheet
 strRangeToCopyFrom = frmCopySheetData.sSpecifiedRangeToCopyFrom
 strSheetTarget = frmCopySheetData.sTargetSheet
 strRangeToCopyTo = frmCopySheetData.sSpecifiedRangeToCopyFromTo
 blnDoFormula = frmCopySheetData.bCopyFormula
 blnCopyNameOfSheet = frmCopySheetData.bCopySheetName
 blnAddSheetsIfNecessary = True
 ‘call the component with necessary arguments
 lngResult = XLSConv1.CopySheetDataEx(strSourceFile,

 strSheetOriginal, strRangeToCopyFrom,
 strTargetFile, strSheetTarget, strRangeToCopyTo,
 blnDoFormula, blnCopyNameOfSheet,
 blnAddSheetsIfNecessary)

 Unload frmCopySheetData ‘the ancillary form is unloaded

DeleteSheet
Description: Delete a sheet or range of sheets within a workbook. Due to Excel
limitations, at least one sheet must remain in a workbook at all times.

Parameters:

DeleteSheet(sPathOriginal As String, sPathTarget As String, sSheetStart As String,
sSheetEnd As String, sSheetExcept As String) As Long

Parameter Meaning

 SPathOriginal Excel file from which to delete sheet(s).
SSheetOriginal Sheet Name or number to delete.

 SPathTarget Can be same as sPathOriginal, otherwise a new workbook is created containing only the
remaining sheets, leaving sPathOriginal unchanged.

SSheetStart Used to either specify the deletion of a single sheet, or the beginning of a range of sheets
to delete. Note: the range is inclusive, meaning sSheetStart is deleted.

SSheetEnd Used to specify the end of a range of sheets to delete. Note: the range is inclusive,
meaning sSheetEnd is deleted.

SSheetExcept Used to specify the only sheet to remain in the workbook. All other sheets will be
deleted. NOTE: If sSheetExcept is not specified, sSheetStart must be. If not -213 is
returned.

Return Values:

 0: Success

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error

 -201: Shareware Expired

 -208: Target Path folder does not exist, even after attempting to create it.

 -213: Invalid or missing sheets specified

Example Code:

WordConverterX XLSConverterX Reference • 17

Taken from the sample VB program, this code snippet demonstrates the collection of
data, which is then passed to the component when DeleteSheet() is called.

 Case SP_XLS_DELETE_SHEET
 frmXLSDeleteSheet.Show vbModal ‘display data collection form
 If (frmXLSDeleteSheet.bErrorOccurred = True) Then
 Exit Sub ‘check for error
 Else ‘collect the necessary data
 strSheetStart = frmXLSDeleteSheet.sSheetStart
 strSheetEnd = frmXLSDeleteSheet.sSheetEnd
 strSheetExcept = frmXLSDeleteSheet.sSheetExcept
 End If
 ‘call the component with necessary arguments
 lngResult = XLSConv1.DeleteSheet(strSourceFile, strTargetFile,

 strSheetStart, strSheetEnd, strSheetExcept)

DeleteRowsOrColumns
Description: This method allows for the deletion of specified rows or columns from
a specified worksheet.

Parameters:

DeleteRowsOrColumns(sPathOriginal As String, sPathTarget As String, sSheet As
String, sRowsColsToDelete As String, bDoColumns As Boolean) As Long

Parameter Meaning

 SPathOriginal Excel file from which to delete sheet(s).
 SPathTarget Can be same as sPathOriginal, otherwise a new workbook is created containing only

the remaining sheets, leaving sPathOriginal unchanged.
sSheet Worksheet (name or number) to remove columns/rows from.
sRowsColsToDelete Rows or columns to delete, specified by numbers, or ranges seperated by comma's.

For example "1,4,9-12" would specify to remove the columns/rows 1, 4, 9, 10, 11,
and 12.

bDoColumns Set to TRUE to delete columns, otherwise, rows will be deleted.

Return Values:

 0: Success

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error

 -201: Shareware Expired

 -208: Target Path folder does not exist, even after attempting to create it.

 -213: Invalid or missing sheets specified

FilesJustCreated
Description: Gets the fully qualified paths and names of the files created with
OpenXLSSaveAs() method.

Parameters:

FilesJustCreated(lIndex As Long) As String

18 • XLSConverterX Reference WordConverterX

Parameter Meaning

 lIndex Valid number from 1 to FilesJustCreatedCount property.

Return Values:

 A fully qualified path and name of the file created, as specified by lIndex.

GetSheetNames
Description: Gets the names of the sheets specified.

Parameters:

GetSheetNames(spath As String, sSheets As String, sSheetNames() As String)

Parameter Meaning

 sPath Original Excel file
sSheets Selected sheets. May be specified as "*", or "1", or "1-3,10,12".
sSheetNames Array storing selected sheets.

Return Values:

 >= 0: Number of sheets found

 -3: Cannot create Excel object

 -11: Invalid sheet specified (empty string)

 -202: Original file does not exist

IsFileUnicode
Description: Deterimines whether or not a file is UNICODE or 8 bit ASCII.

Parameters:

IsFileUnicode(sFileToTest As String) As Boolean

Parameter Meaning

 sFileToTest Original text file

Return Values:

True: File is a Unicode file

False: File is not a Unicode file

MoveSheet
Description: Move a sheet to a new location within a workbook.

Parameters:

MoveSheet(sPathOriginal As String, sPathTarget As String, sSheetToMove As
String, sSheetBefore As String, sSheetAfter As String) As Long

Parameter Meaning

WordConverterX XLSConverterX Reference • 19

 sPathOriginal Excel file within which the sheet will be moved.
 sPathTarget Can be same as sPathOriginal, otherwise a new workbook is created.
sSheetToMove Name of the sheet to move. Can be a name or #.
sSheetBefore Sheet will be placed before this sheet (name or #). If sSheetBefore = "firstfirst" then it

is placed as the first sheet in the workbook

sSheetAfter Sheet will be placed after this sheet (Name or #). If sSheetAfter = "lastlast"
then it is placed as the last sheet. NOTE: If both sSheetBefore and sSheetAfter
are empty, then the sheet will be moved to the last position.

Return Values:

 0: Success

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error

 -201: Shareware Expired

 -204: Source Sheet does not exist

 -208: Target Path folder does not exist, even after attempting to create it.

 -210: SheetBefore or SheetAfter does not exist

 -215: Sheet to move does not exist

Example Code:

Taken from the sample VB program provided, a form is displayed to collect
necessary data, which is then passed to the component for processing by the
MoveSheet() function of the component.

Case SP_XLS_MOVE_SHEET
 frmXLSMoveSheet.Show vbModal ‘display the form
 If (frmXLSMoveSheet.bErrorOccurred = True) Then
 Exit Sub ‘check for error
 Else ‘collect necessary data
 strSheetToMove = frmXLSMoveSheet.sSheetToMove
 strSheetBefore = frmXLSMoveSheet.sSheetBefore
 strSheetAfter = frmXLSMoveSheet.sSheetAfter
 End If
 ‘call the component with necessary arguments
 lngResult = XLSConv1.MoveSheet(strSourceFile,

 strTargetFile, strSheetToMove,
 strSheetBefore, strSheetAfter)

 Unload frmXLSMoveSheet

OpenXLSSaveAs
Description: Performs the conversion of an Excel, CSV or any file Excel can open
into any of the file formats Excel can Save As.

Parameters:

OpenXLSSaveAs(sSourceFile As String, sSheets As String, sTargetFile As String,
lTargetType As Long, bDoFormula As Boolean) As Long

Parameter Meaning

20 • XLSConverterX Reference WordConverterX

 sSourceFile The file to be converted. It can be any file Excel can open. When installing MS Office,
be sure to install all the Text and file filters available.

 sTargetFile Name for file resulting from the conversion process.
sSheets Name or index number of sheet(s) being converted. You can specify single or multiple

sheets, by name or index number.
lTargetType The file format to convert TO, i.e. the format sTargetFile will be saved as. See Excel

File Conversion Formats for valid values.

bDoFormula If TRUE, OpenXLSSaveAs() will convert the formula rather than the value of each cell.

Return Values:

 0 = Success

 -2 = Source file does not exist

 -3 = Unable to create Excel Application. Is it installed?

 -4 = Unable to destroy Excel Application.

 -10 = General Excel Error, see ErrorString for details

 -11 = Invalid Sheet Specified

 -201 = Shareware expired

Example Code:

Taken from the sample VB program provided, the necessary arguments are passed to
the function OpenXLSSaveAs() in this case.

Private Function PerformConversionXLS(strSourceFile As String, _
 strSheets As String, _
 strTargetFile As String, _
 lngTargetType As Long, _
 blnDoFormula As Boolean) As Long

 Dim lngConvResult As Long

 ‘call the component with necessary arguments
 lngConvResult = XLSConv1.OpenXLSSaveAs(strSourceFile, strSheets,
 strTargetFile, lngTargetType, blnDoFormula)

 'check that a file was created
 If (lngConvResult = 0) Then
 If (FileExists(strTargetFile) = False) Then
 lngConvResult = -100
 End If
 End If

 ‘assign an error code, if applicable
 Select Case (lngConvResult)
 Case -2
 strErr = "Source file does not exist."
 Case -3
 strErr = "Unable to create Excel Application. Is it

installed?"
 Case -4
 strErr = "Unable to destroy Excel Application."
 Case -10
 strErr = "General Excel error."
 Case -100
 strErr = "File does not exist."
 End Select

‘function value returned to caller for additional evaluation
 PerformConversionXLS = lngConvResult
End Function

WordConverterX XLSConverterX Reference • 21

RenameSheet
Description: Rename a worksheet.

Parameters:

RenameSheet(sPathOriginal As String, sPathTarget As String, sSheetToRename As
String, sNewSheetName As String) As Long

Parameter Meaning

 sPathOriginal Excel file containing the sheet to be renamed.
 sPathTarget Can be same as sPathOriginal, otherwise a new workbook is created with the original

and newly renamed sheets.
sSheetToRename Name of the sheet to rename.
sNewSheetName sSheetToRename will be renamed to this value.

Return Values:

 0: Success

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error

 -201: Shareware Expired

 -208: Target Path folder does not exist, even after attempting to create it.

 -216: Sheet to rename does not exist

Example Code:

Taken from the sample VB program provided, this code demonstrates how a
secondary form is displayed for data collection. The information is transferred to
variables then passed to the RenameSheet function of the component.

 Case SP_XLS_RENAME_SHEET
 frmXLSRenameSheet.Show vbModal ‘form to collect data

 If (frmXLSRenameSheet.bErrorOccurred = True) Then
 Exit Sub
 Else ‘collect the necessary data
 strSheetToRename = frmXLSRenameSheet.sSheetToRename
 strNewSheetName = frmXLSRenameSheet.sNewSheetName
 End If
 ‘call the component with necessary arguments
 lngResult = XLSConv1.RenameSheet(strSourceFile, strTargetFile,
 strSheetToRename, strNewSheetName)

SearchAndReplaceCellContent
Description: Search for and replace content of cell(s).

Parameters:

SearchAndReplaceCellContent(sPathOriginal As String, sPathTarget As String,
sSheet As String, sSearchFor As String, sReplaceWith As String, bCaseSensitive As
Boolean, bLookAtPart As Boolean, bMatchByte As Boolean) As Long

Parameter Meaning

22 • XLSConverterX Reference WordConverterX

 sPathOriginal Original Excel file
 sPathTarget Can be same as sPathOriginal, otherwise a new workbook is created.
sSheet Name of the sheet to be searched
sSearchFor Text to search for

sReplaceWith Text to replace with

bCaseSensitive TRUE means a case sensitive search

bLookAtPart If TRUE, replacement will occur only if the sSearchFor comprises the entire cell
content.

bMatchByte May use ASCII or Unicode character sets. If bMatchByte is TRUE then replacement
occurs only if both search and replace characters are in the same character set.

Return Values:

 0: Success

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error.

 -201: Shareware Expired.

 -208: Target Path folder does not exist, even after attempting to create it.

 -213: Invalid or missing sheet specified.

Example Code:

SheetsJustProcessed
Description: Gets the names of the sheets processed with OpenXLSSaveAs()
method.

Parameters:

SheetsJustProcessed (lIndex As Long) As String

Parameter Meaning

 lIndex Valid number from 1 to SheetsJustProcessedCount property.

Return Values: Sheet names.

ShowSheetSelectionDialog
Description: A built in form has been provided to allow your users to select which
sheet of a given workbook they wish to perform an action on. This form allows your
end users to click on a listbox containing sheet names rather than having them
specify it by name or index number.

Parameters:

ShowSheetSelectionDialog(sXLSFile As String, bMultipleSelect As Boolean) As
String

WordConverterX XLSConverterX Reference • 23

Parameter Meaning
 sXLSFile The source workbook file
 bMultipleSelect Users can select multiple sheets if you allow them to by setting this parameter

to TRUE. Values are returned as a comma-delimited list (i.e. "Sheet2,
LastSheet").

Example Code:

Taken from the sample VB program from the frmCopySheetData form

Private Sub cmdSelectSheetOriginal_Click()
 Dim sSheets As String
 bErrorOccurred = False

 ‘check if the file exists first
 If Not

frmTestXLSConverterX.FileExists(frmTestXLSConverterX _
strSourceFile) Then

 MsgBox "Please specify a file that exists", vbOKOnly, _
"File Does Not Exist"

 bErrorOccurred = True
 Unload Me
 Exit Sub
 End If

 ‘displays the dialog box for user to select sheet(s)
 sSheets =

frmTestXLSConverterX.XLSConv1.ShowSheetSelectionDialog _
(frmTestXLSConverterX.strSourceFile, False)

 If (sSheets <> "") Then
 txtCopySheetOriginal = sSheets
 End If
End Sub

TransposeSheetData
Description: Make all the data in the sheet change location by swapping Cell and
Row numbers.

Parameters:

TransposeSheetData(sPathOriginal As String, sPathTarget As String, sSheet As
String) As Long

Parameter Meaning
 sPathOriginal The source workbook file
 sPathTarget Can be the same as sPathOriginal, otherwise a new workbook is created
sSheet Sheet in sPathOriginal whose data will be transposed

Return Values:

0: Success

 -3: Unable to create Excel Application. Is it installed?

 -4: Unable to destroy Excel Application.

 -200: Excel reported an error.

 -201: Shareware Expired.

 -208: Target Path folder does not exist, even after attempting to create it.

24 • XLSConverterX Reference WordConverterX

 -213: Invalid or missing sheet specified.

Example Code:

Methods: Text Files Manipulation

ConcatenateTwoTextFiles
Description: Places the sSourceFile text at the end of sTargetFile.

Parameters:

ConcatenateTwoTextFiles(sSourceFile As String, sTargetFile As String) As Long

Parameter Meaning

 SSourceFile This file will be added to the end of sTargetFile

STargetFile Location where sSourceFile will be added; at the end of sTargetFile

Return Values:

0: Success

-2: Unable to open original file

-3: Unable to open target file

 -201: "Shareware has expired"

Example Code:

The code below is taken from the sample VB program provided. It demonstrates
both the ConcatenateTwoTextFiles() and DeleteEmptyLinesFromTextFile methods.

Private Function PerformTextSpecialProcess(lngProcess As Long, _
 strSourceFile As String, _
 strTargetFile As String) _

 As Long

 Dim lngResult As Long
 Select Case (lngProcess) ‘choose which of the processes to execute
 ‘then call the component
 Case SP_CONCATENATE_TEXT_FILES
 lngResult = XLSConv1.ConcatenateTwoTextFiles(strSourceFile,

 strTargetFile)
 Case SP_REMOVE_EMPTY_LINES_FROM_TEXT_FILE
 lngResult = XLSConv1.DeleteEmptyLinesFromTextFile _

 (strSourceFile, strTargetFile)
 End Select

 If (lngResult = 0) Then ‘checks that a file was created using the
 ‘helper function, FileExists
 If (FileExists(strTargetFile) = False) Then
 lngResult = -100
 End If
 End If

 Select Case (lngResult) ‘if error, display appropriate message
 Case -1
 strErr = "Unable to Complete Requested Process"
 Case -100
 strErr = "File does not exist."
 End Select

WordConverterX XLSConverterX Reference • 25

 PerformTextSpecialProcess = lngResult
End Function

DeleteEmptyLinesFromTextFile
Description: Removes blank lines from within a text file. Blank lines include those
with none or only space characters.

Parameters:

DeleteEmptyLinesFromTextFile(sSourceFile As String, sTargetFile As String) As
Long

Parameter Meaning

 SSourceFile Text file to modify

STargetFile If same as sSourceFile, DeleteEmptyLinesFromText will modify the original file.
Otherwise, it will create a new, modified file.

Return Values:

 0: Success

-2: Unable to open original file

-3: Unable to open target file

-201: "Shareware has expired"

Example Code:

The code below is taken from the sample VB program provided. It demonstrates
both the ConcatenateTwoTextFiles() and DeleteEmptyLinesFromTextFile methods.

Private Function PerformTextSpecialProcess(lngProcess As Long, _
 strSourceFile As String, _
 strTargetFile As String) _

 As Long

 Dim lngResult As Long
 Select Case (lngProcess) ‘choose which of the processes to execute
 ‘then call the component
 Case SP_CONCATENATE_TEXT_FILES
 lngResult = XLSConv1.ConcatenateTwoTextFiles(strSourceFile,

 strTargetFile)
 Case SP_REMOVE_EMPTY_LINES_FROM_TEXT_FILE
 lngResult = XLSConv1.DeleteEmptyLinesFromTextFile _

 (strSourceFile, strTargetFile)
 End Select

 If (lngResult = 0) Then ‘checks that a file was created using the
 ‘helper function, FileExists
 If (FileExists(strTargetFile) = False) Then
 lngResult = -100
 End If
 End If

 Select Case (lngResult) ‘if error, display appropriate message
 Case -1
 strErr = "Unable to Complete Requested Process"
 Case -100
 strErr = "File does not exist."
 End Select
 PerformTextSpecialProcess = lngResult
End Function

26 • XLSConverterX Reference WordConverterX

Methods: CSV File Manipulation

csvChangeDelimitationCharacter
Description: This method is used to replace the comma delimiter with a delimiter of
your choice. Any valid ASCII character can be specified (1-254). For example if we
swapped the comma with the pound symbol "#" (ASCII 35) the file before applying
this process looks like:

Data1,Data2,Data3,Data4
Data1,Data2,Data3,Data4

After applying this process it looks like:

Data1#Data2#Data3#Data4

Data1#Data2#Data3#Data4

Parameters:

csvChangeDelimitationCharacter(sInputFile As String, sOutputFile As String, sChar
As String) As Long

Parameter Meaning

sPathOriginal CSV file to modify.

sPathTarget Can be same as sPathOriginal in which case sPathOriginal will be overwritten. If a
different name is specified, XLSConverterX will create a new file.

 sChar Character to replace the comma as delimiter.

Return Values:

 0: Success

 -2: "Unable to open or save to target file. Could be a sharing violation, or invalid
file type.

 -3: "Unable to open original file. Check file format. Could be a sharing violation.

 -201: "Shareware has expired"

Example Code:

This VB function is representative of how the component may be used with any of
the csv special processes. The value returned by the function may then be further
evaluated, as necessary.

Private Function BeginCSVSpecialProcess(lngProcess As Long, _
 strSourceFile As String, _
 strTargetFile As String, _
 strNewChar As String, _
 strRowsToUse As String, _
 strColsToUse As String) As Long

 Dim lngConvResult As Long

 'call the appropriate method from the component with the

WordConverterX XLSConverterX Reference • 27

 'necessary arguments
 Select Case (lngProcess)
 Case SP_CSV_SURROUND_WITH_QUOTES
 lngConvResult = XLSConv1.csvEncaseEachFieldWithQuotes
 (strSourceFile, strTargetFile)
 Case SP_CSV_PAD_WITH_SPACES
 lngConvResult = XLSConv1.csvPadWithSpaces(strSourceFile,

 strTargetFile)
 Case SP_CSV_CHANGE_DELIMITER
 lngConvResult = XLSConv1.csvChangeDelimitationCharacter

 (strSourceFile, strTargetFile, strNewChar)
 Case SP_CSV_REMOVE_EMPTY_LINES
 lngConvResult = XLSConv1.csvRemoveEmptyLines(strSourceFile,

 strTargetFile)
 Case SP_CSV_INCLUDE_ROWS
 lngConvResult = XLSConv1.csvCropCSVFileRows(strSourceFile,

 strTargetFile, strRowsToUse)
 Case SP_CSV_INCLUDE_COLS
 lngConvResult = XLSConv1.csvCropCSVFileCols(strSourceFile,

 strTargetFile, strColsToUse)
 Case SP_CSV_REMOVE_CTL_CHARS
 lngConvResult = XLSConv1.csvRemoveControlCharactersFromFile

 (strSourceFile, strTargetFile)
 Case SP_CSV_TRIM_EXCESS_COMMAS
 lngConvResult = XLSConv1.csvTrimCSVFile(strSourceFile,

 strTargetFile)
 End Select

 ‘if the component returns 0 (success) do a further check that
 ‘the file was created
 If (lngConvResult = 0) Then
 If (FileExists(strTargetFile) = False) Then
 lngConvResult = -100
 End If
 End If

 ‘assign an error code, if applicable
 Select Case (lngConvResult)
 Case -2
 strErr = "Unable to open or save to target file. Could be

a sharing violation, or invalid file type."
 Case -3
 strErr = "Unable to open original file. Check file format.

Could be a sharing violation."
 Case -100
 strErr = "File does not exist."
 End Select

 ‘function value returned to caller for additional evaluation
 BeginCSVSpecialProcess = lngConvResult
End Function

csvCropCSVFileCols
Description: This method allows you to crop or remove certain columns while
keeping others. Those not specified will be removed. For example to keep columns
4-20, 25, and 30 specify: "4-20,25,30" for the sColsToUse parameter.

Parameters:

csvCropCSVFileCols(sInputFile As String, sOutputFile As String, sColsToUse As
String) As Long

Parameter Meaning

sPathOriginal CSV file to use as the original.

sPathTarget Can be same as sPathOriginal, in which case sPathOriginal will be modified. If a

28 • XLSConverterX Reference WordConverterX

different name is specified, XLSConverterX will create a new file and leave
sPathOriginal untouched.

sColsToUse Selection of columns to keep within the CSV file. All others will be discarded.
For example to keep cols 4-20, 25, and 30 specify: "4-20,25,30"

Return Values:

 0: Success

 -2: "Unable to open or save to target file. Could be a sharing violation, or invalid
file type.

 -3: "Unable to open original file. Check file format. Could be a sharing violation.

-201: "Shareware has expired"

Example Code:

Please review the code sample under csvChangeDelimitationCharacter()

csvCropCSVFileRows
Description: This method allows you to crop or remove certain rows while keeping
others. Those not specified will be removed. For example to keep rows 1,9-10, 25,
and 30 specify: "1,9-10, 25,30" for the sRowsToUse parameter.

Parameters:

csvCropCSVFileRows(sInputFile As String, sOutputFile As String, sRowsToUse As
String) As Long

Parameter Meaning

 SPathOriginal CSV file to modify

 SPathTarget Can be same as sPathOriginal in which case sPathOriginal will be overwritten. If a
different name is specified, XLSConverterX will create a new file.

 SRowsToUse /1 = Selection of rows to include. All others will be discarded. For example to
keep rows 4-20, 25, and 30 specify: /1 4-20,25,30.

Return Values:

 0: Success

 -2: "Unable to open or save to target file. Could be a sharing violation, or invalid
file type.

 -3: "Unable to open original file. Check file format. Could be a sharing violation.

 -201: "Shareware has expired"

Example Code:

Please review the code sample under csvChangeDelimitationCharacter()

csvEncaseEachFieldWithQuotes
Description: This method is used to surround each field of a CSV file with
quotation marks. For example, the file before applying this process looks like:

Data1,Data2,Data3
Data1,Data2,Data3

WordConverterX XLSConverterX Reference • 29

After applying this process it looks like:

"Data1","Data2","Data3"

"Data1","Data2","Data3"

Parameters:

csvEncaseEachFieldWithQuotes(sPathOriginal As String, sPathTarget As String)
As Long

Parameter Meaning

sPathOriginal CSV file to modify

sPathTarget Can be same as sPathOriginal in which case sPathOriginal will be overwritten. If a
different name is specified, XLSConverterX will create a new file.

Return Values:

 0: Success

 -2: "Unable to open or save to target file. Could be a sharing violation, or invalid
file type.

 -3: "Unable to open original file. Check file format. Could be a sharing violation.

 -201: "Shareware has expired"

Example Code:

Please review the code sample under csvChangeDelimitationCharacter()

csvPadForFixedLengthFields
Description: This method will pad each field to a fixed length, with a specifically
chosen character. For example, the file before applying this process looks like:

Data001,Data2,Data0003,Data4
Data1,Data000002,Data3,Data04

After applying this process having specified a 10 character field, padded right with a
character, it looks like:

Data001###,Data2#####,Data0003##,Data4#####

Data1#####,Data000002,Data3#####,Data04####

Parameters:

csvPadForFixedLengthFields(sInputFile As String, sOutputFile As String, lLength
As Long, sCharToUse As String, bPadLeft As Boolean, sColumn As String) As
Long

Parameter Meaning
sPathOriginal CSV file to modify

sPathTarget Can be same as sPathOriginal in which case sPathOriginal will be overwritten. If a
different name is specified, XLSConverterX will create a new file.

lLength Length to make each field

30 • XLSConverterX Reference WordConverterX

sChar Character to pad with, typically a space or “0”

bPadLeft If TRUE will pad to the left, otherwise will pad to the right

sColumn Which columns the padding should be applied to. May specify individual columns or
ranges such as 1,3-5 or may specify all with an asterisk *

Return Values:

 0: Success

 -2: "Unable to open or save to target file. Could be a sharing violation, or invalid
file type: (") + co.sTargetFile + ")"

 -3: "Unable to open original file. Check file format. Could be a sharing violation: (")
+ co.sOriginalFile + ")"

 -201: "Shareware has expired"

Example Code:

csvPadWithSpaces
Description: This method is used to surround each field of a CSV file with space
characters, " ". For example, the file before applying this process looks like:

Data1,Data2,Data3,Data4
Data1,Data2,Data3,Data4

After applying this process it looks like:

Data1 , Data2 , Data3 , Data4

Data1 , Data2 , Data3 , Data4

Parameters:

csvPadWithSpaces(sInputFile As String, sOutputFile As String) As Long

Parameter Meaning

SPathOriginal CSV file to modify

SPathTarget Can be same as sPathOriginal in which case sPathOriginal will be overwritten. If a
different name is specified, XLSConverterX will create a new file.

Return Values:

 0: Success

 -2: "Unable to open or save to target file. Could be a sharing violation, or invalid
file type.

 -3: "Unable to open original file. Check file format. Could be a sharing violation.

 -201: "Shareware has expired"

Example Code:

Please review the code sample under csvChangeDelimitationCharacter()

WordConverterX XLSConverterX Reference • 31

csvRemoveControlCharactersFromFile
Description: Sometimes unwanted control characters (like carriage returns) can
make their way into the data. Use this special process to remove any unwanted
control characters. This does not include the carriage return and linefeed at the end
of each line of course.

Parameters:

csvRemoveControlCharactersFromFile(sInputFile As String, sOutputFile As String)
As Long

Parameter Meaning

sPathOriginal CSV file to modify

sPathTarget Can be same as sPathOriginal in which case sPathOriginal will be overwritten. If a
different name is specified, XLSConverterX will create a new file.

Return Values:

 0: Success

 -2: "Unable to open or save to target file. Could be a sharing violation, or invalid
file type.

 -3: "Unable to open original file. Check file format. Could be a sharing violation.

-201: "Shareware has expired"

Example Code:

Please review the code sample under csvChangeDelimitationCharacter()

csvRemoveEmptyLines
Description: This method is used to remove empty lines from a CSV file. Empty
lines constitute those lines that do not have any data between the ",". Blank
characters are not considered data. For example, the file before applying this process
looks like:

Data1,Data2,Data3,Data4
,, ,
Data1,Data2,Data3,Data4
Data1,Data2,Data3,Data4

After applying this process it looks like:

Data1,Data2,Data3,Data4
Data1,Data2,Data3,Data4

Data1,Data2,Data3,Data4

Parameters:

csvRemoveEmptyLines(sInputFile As String, sOutputFile As String) As Long

Parameter Meaning

sPathOriginal CSV file to modify

sPathTarget Can be same as sPathOriginal in which case sPathOriginal will be overwritten. If a
different name is specified, XLSConverterX will create a new file.

32 • XLSConverterX Reference WordConverterX

Return Values:

 0: Success

 -2: "Unable to open or save to target file. Could be a sharing violation, or invalid
file type.

 -3: "Unable to open original file. Check file format. Could be a sharing violation.

 -201: "Shareware has expired"

Example Code:

Please review the code sample under csvChangeDelimitationCharacter()

csvTrimCSVFile
Description: This method is used to remove excess commas from a CSV file.
Those commas after the last piece of valid data will be removed. For example, the
file before applying this process looks like:

Data1,Data2,Data3,Data4,,,
,, ,
Data1,Data2,Data3,Data4,,,
Data1,Data2,Data3,Data4

After applying this process it looks like:

Data1,Data2,Data3,Data4
,,
Data1,Data2,Data3,Data4
Data1,Data2,Data3,Data4
Data1,Data2,Data3,Data4

Notice the space character, though not shown in row 2, column 2, is valid data.

Parameters:

csvTrimCSVFile(sInputFile As String, sOutputFile As String) As Long

Parameter Meaning

sPathOriginal CSV file to modify

 sPathTarget Can be same as sPathOriginal in which case sPathOriginal will be overwritten. If a
different name is specified, XLSConverterX will create a new file.

Return Values:

 0: Success

 -2: "Unable to open or save to target file. Could be a sharing violation, or invalid
file type.

 -3: "Unable to open original file. Check file format. Could be a sharing violation.

 -201: "Shareware has expired"

Example Code:

Please review the code sample under csvChangeDelimitationCharacter()

WordConverterX XLSConverterX Reference • 33

txtChangeCharacterIgnoreWithinQuotes
Description: Change any single character to any other single character, comma
delimiter included, but will ignore instances of the search character that are inside
quotation marks.

Parameters:

txtChangeCharacterIgnoreWithinQuotes(sInputFile As String, sOutputFile As String,
sChar As String, sCharReplace As String) As Long

Parameter Meaning
sPathOriginal CSV file to modify

sPathTarget Can be the same as sPathOriginal, otherwise a file is created with the original and
newly moved sheets.

sChar Character to swap out; searches for this character

sCharReplace Character to replace sChar

Return Values:

 0: Success

-2: "Unable to open or save to target file. Could be a sharing violation, or invalid file
type: (") + co.sTargetFile + ")"

-3: "Unable to open original file. Check file format. Could be a sharing violation: (")
+ co.sOriginalFile + ")"

-201: "Shareware has expired"

Note:
XLSConverterX checks for pairs of quotation marks, line by line. If data input has
an opening quote without a closing quote, output for that line may not be as
expected.

Methods: General

ExcelIsInstalled
Description: This routine will return TRUE if MS Excel is installed on the PC.
NOTE: This method will check the system first time only, for efficiency.

Parameters: none

ExcelIsInstalled()

StateFileLoad
Description: Reloads the saved properties of the component.

Parameters: none

StateFileLoad()

See Also: StateFile and UseStateFile properties and the StateFileSave() method.

34 • XLSConverterX Reference WordConverterX

StateFileSave
Description: Saves the properties of the component. Allows the user to save a given
configuration for the component.

Parameters: none

StateFileSave()

See Also: StateFile and UseStateFile properties and the StateFileLoad() method.

Events

OnError
Description: Event is raised with the error code being returned as well as the error
string describing the error.

Parameters:

Public Event OnError(lErr As Long, sErr As String)

WordConverterX XLSConverterX Reference • 35

Conversion Formats

Excel File Conversion Formats

File Type File Type Constant
XlAddIn Microsoft Excel Add In (*.XLA) 18

XlCSV Comma Delimited (*.CSV) 6

XlCSVMac Comma Delimeted Macintosh (*.CSV) 22

XlCSVMSDOS Comma Delimited DOS (*.CSV) 24

XlCSVWindows Comma Delimited Windows (*.CSV) 23

XlCurrentPlatformText -4158

xlDBF2 dBase II (*.DBF) 7

xlDBF3 dBase III (*.DBF) 8

xlDBF4 dBase IV (*.DBF) 11

XlDIF Data Interchange Format (*.DIF) 9

xlExcel2 Microsoft Excel 2.0 Worksheet (*.XLS) 16

xlExcel2FarEast Microsoft Excel 2.0 Worksheet Far East (*.XLS) 27

xlExcel3 Microsoft Excel 3.0 Worksheet (*.XLS) 29

xlExcel4 Microsoft Excel 4.0 Worksheet (*.XLS) 33

xlExcel4Workbook Microsoft Excel 4.0 Workbook (*.XLW) 35

xlExcel5 Microsoft Excel 5.0/95 Workbook (*.XLW) 39

xlExcel7 Microsoft Excel 7.0/95 Workbook (*.XLW) 39

xlExcel9795 Microsoft Excel 97-2000 & 5.0/95 Workbook (*.XLS) 43

XlHTML Web Page (*.HTM, *.HTML) 44

XlIntlAddIn 26

XlIntlMacro 25
xlSYLK SYLK (Symbolik Link) (*.SLK) 2

36 • Conversion Formats WordConverterX

XlTemplate Template (*.XLT) 17

XlTextMac Text Macintosh (*.TXT) 19

XlTextMSDOS Text (MS-DOS) (*.TXT) 21

XlTextPrinter 36

XlTextWindows Text Windows (*.TXT) 20

XlUnicodeText Unicode Text (*.TXT) 42

xlWJ2WD1 14

xlWK1 WK1 (1-2-3) *.WK1 5

xlWK1ALL WK1 All (1-2-3) *.WK1 31

xlWK1FMT WK1 FMT (1-2-3) *.WK1 30

xlWK3 WK3 (1-2-3) *.WK3 15

xlWK4 WK4 (1-2-3) *.WK4 38

xlWK3FM3 WK3 FM3 (1-2-3) *.WK3 32

XlWKS WKS (1-2-3) *.WKS 4

XlWorkbookNormal Microsoft Excel Workbook (*.XLS) -4143

xlWorks2FarEast 28

xlWQ1 34

xlWJ3 40

xlWJ3FJ3 41

WordConverterX Conversion Formats • 37

WordConverterX Conversion Formats • 39

	XLSConverterX Users Manual
	What is XLSConverterX?
	XLSConverterX Features
	What is an ActiveX control?
	What You Will Need to Use XLSConverterX
	Installing
	Uninstalling
	Distributing XLSConverterX
	Troubleshooting XLSConverterX - Updates
	Using Borland C++ Builder
	C++ Builder: Importing Components
	C++ Builder: Passing Arguments

	Using CreateObject() To Create an Instance

	XLSConverterX Reference
	Properties
	ErrorString
	ExcelVersion
	FilesJustCreatedCount
	InputFile_PassWord
	InputFile_PassWord_TW
	Key
	OptimizeForSpeed
	OutputFile_PassWord
	OutputFile_PassWord_TW
	SheetsJustProcessedCount
	SkipEmptySheets
	StateFile
	UseStateFile
	Verbose

	Methods: Excel File Manipulation
	AddSheet
	ChangeNumberFormat
	ChangePassword
	CopySheet
	CopySheetData
	CopySheetDataEx
	DeleteSheet
	DeleteRowsOrColumns
	FilesJustCreated
	GetSheetNames
	IsFileUnicode
	MoveSheet
	OpenXLSSaveAs
	RenameSheet
	SearchAndReplaceCellContent
	SheetsJustProcessed
	ShowSheetSelectionDialog
	TransposeSheetData

	Methods: Text Files Manipulation
	ConcatenateTwoTextFiles
	DeleteEmptyLinesFromTextFile

	Methods: CSV File Manipulation
	csvChangeDelimitationCharacter
	csvCropCSVFileCols
	csvCropCSVFileRows
	csvEncaseEachFieldWithQuotes
	csvPadForFixedLengthFields
	csvPadWithSpaces
	csvRemoveControlCharactersFromFile
	csvRemoveEmptyLines
	csvTrimCSVFile
	txtChangeCharacterIgnoreWithinQuotes

	Methods: General
	ExcelIsInstalled
	StateFileLoad
	StateFileSave

	Events
	OnError

	Conversion Formats
	Excel File Conversion Formats

